Posts etiquetados ‘DWDM’

El tráfico en las redes IP tiene fundamentalmente dos componentes. Por una parte está el tráfico que se establece entre usuarios y servicios que presta esa red IP. Si se establecen sesiones P2P (Peer to Peer) entre clientes de una misma red IP, ese tráfico permanece dentro de dicha red IP. En cambio, si el cliente busca información que no se encuentra disponible en la red IP, saldrá hacia las interconexiones para buscarlo, en otras redes IP del mismo país, o hacia la salida internacional, en busca de redes IP de otros países donde se conectan los servidores en los que reside la información y/o el servicio que el usuario anda buscando.

Cuando los programas P2P hicieron su aparición se produjo dos efectos principales en las grandes redes IP. Por una parte, el tráfico sufrió un incremento considerable. Por la otra, gran parte de ese incremento fue asumido dentro de las propias redes, ya que se establecían conexiones entre clientes de la misma red. Estamos hablando de la época de oro del emule y demás familiares y los torrents.

Con la aparición de páginas de descarga directa, el perfil del tráfico sufrió un importante cambio. Como los servidores de este tipo de páginas se encontraban en países muy concretos y te ofrecían la posibilidad de acceder a los contenidos de manera mucho más rápida, el tráfico P2P fue decreciendo lentamente a la par que se incrementaba el tráfico que iba dirigido a las interconexiones, en busca de esos pocos países donde residían los servidores de descarga directa. Estamos hablando de Megaupload, Rapidshare y demás familiares.

Ahora llega el FBI y pega un portazo a una de las principales páginas de descarga directa, y el resto aplican el dicho de…cuando las barbas de tu vecino veas pelar…Consecuencias inmediatas, el tráfico de interconexión desciende drásticamente mientras se va recuperando las antiguas costumbres peer to peer.

La moraleja de este cuento es que el tráfico IP crece, más o menos rápido, pero crece. Lo que no sabemos es cómo. Creo que ha quedado claro que las aplicaciones y los usos serán los que determinen como dimensionar y planificar una red IP. No es lo mismo llevarlo todo a un punto o un par de puntos que distribuirlo por toda tu red.

La cuestión es que en cualquier momento puede aparecer cualquier nueva killer application que te vuelva a poner patas arriba los patrones de tráfico de tu red y tire por tierra todas tus previsiones de planificación y gestión de recursos. Con esta incertidumbre manifiesta, una integración entre el plano IP y el plano óptico empieza a cobrar sentido por encima de las pretensiones de algunos jugadores específicos que siempre habían apostado por ello.

La red IP enruta el tráfico estupendamente, pero si no tiene asociada una red óptica que transporte los paquetes de un router a otro, nos vale de bien poco.

En la mayoría de las redes de los grandes proveedores de servicio, red IP y red óptica conforman dos mundos independientes en todos los sentidos, operativo, diseño, planificación, gestión… Pero en estos tiempos revueltos, empieza a  tomar forma la idea de que si dispongo de una planificación flexible , dinámica y conjunta de mis recursos IP y de mis recursos ópticos seré mucho más eficiente a la hora de enfrentarme a nuevos cambios del veleta tráfico IP, afrontándolos de manera ágil, dinámica y por supuesto efectiva en costes.

Eso sólo sería viable si existe algún tipo de integración entre los planos de control de ambos mundos. Es decir, si la red IP se constituye como cliente de la red óptica y es capaz de solicitar servicios de conectividad en tiempo real. Y la red óptica es capaz de servirlos.

Pero esa es otra historia, de la que hablaremos en otro cuento…

Anuncios

El concepto de super-channel, o super-canal está asociado a velocidades superiores a los 100 Gbps. ¿Por qué se necesitan velocidades tan elevadas? Porque el tráfico en Internet crece, y crece y parezca que no tenga límite. Cada vez son más los usuarios y cada vez son más los contenidos. Además cada vez son más las diferentes formas y lugares desde los que podemos acceder a Internet. La explosión del video, en concreto los formatos de alta definición y los smartphones, tablets y demás dispositivos con sus posibilidades infinitas hace que las necesidades de ancho de banda sean inconmesurables. Ni hablemos de cuando lo que se conoce como Internet de las Cosas y todo lo que se engloba bajo el concepto de La Nube sean una realidad palpable.

Esta explosión es una oportunidad clara para los proveedores de servicio, los que mejor sepan captar las experiencias de los usuarios en este entorno dinámico in extremis, serán los que capturen más mercado. Claro, estos proveedores de servicio tienen que estar preparados para que sus redes escalen de manera dramática, y por supuesto minimizando los costes capitales y operacionales, de manera que el precio del Gbps sera el mínimo posible.

El punto de partida para esta revolución se encuentra en las redes de transporte, pilares de las comunicaciones de larga distancia.

Para emprender este camino, los mecanismos de transmisión óptica DWDM deben también adaptarse a las nuevas necesidades. El concepto de supercanal es una nueva aproximación a las promesas de capacidad que el DWDM puede ofrecer ante el incremento creciento del tráfico.

¿Qué es un Supercanal?

DWDM  es una tecnoogía que permite que en una sola fibra óptica viajen en paralelo varias portadoras ópticas, de manera que el uso de dicha fibra es mucho más eficiente, ya que en lugar de un único canal de información, se transmitirán muchos más (cada portadora óptica es un canal).

Se trata de una tecnología ampliamente desplegada y que ahora se encuentra en el entorno de los 100 Gbps por cada portadora óptica. Pero con las espectativas en cierne de crecimiento exacerbado, puede que esta capacidad no sea capaz de asumirlas. Hay que incrementar el ancho de banda sin incrementar la complejidad operacional.

En respuesta a la pregunta, ¿qué vienen despues de los 100 Gbps?, aparece el supercanal como la mejor posicionada. El supercanal es una evolución del DWDM en la que varias portadoras ópticas se combinan para crear una señal de línea compuesta de la capacidad deseada, y que se provisiona de una sola vez. Por supuesto, para el cliente, el uso de supercanales es algo transparente.

Implementando Super-Canales

A día de hoy no se disponen de estándares para implementar super-canales. Además, aspectos tales como el número de portadoras, las velocidades de las mismas, incluso si deben ser portadoras contiguas o no, y el nivel de integración de componentes, son temas que están totalmente abiertos.

Existen dos opciones de implementación obvias para desarrollar transpondedores de una única portadora que funcionen a velocidades por encima de los 100 Gbps. Una es transmitir más símbolos de modulación por segundo y la otra es codificar más bits por símbolo de modulación. Incluso una combinación de ambos.

Incrementar el número de bits por símbolo implica incrementar la eficiencia espectral, y eso no siempre es fácil ni puede pagarse el precio que puede costar.

La tecnología de los super-canales añade una tercera opción, la posibilidad de manejar múltiples portadoras como si fuera una sola.

La importancia de la integración fotónica

Los super-canales permiten una capacidad de 1 Tbps DWDM provisionada de una sola vez sin penalizaciones en la eficiencia espectral y con el mismo alcance óptico que el de los transpondedores de 100 Gbps coherentes actuales.

Es evidente que un super-canal de 10 portadoras necesita establecer 10 componentes ópticos en una tarjeta de línea. Implementando este tipo de interfaz usando componentes ópticos discretos podría ser totalmente inviable.

 Usando PIC, Circuitos Fotónicos Integrados, uno en transmisión y otro en recepción, las 10 portadoras podrían implementarse en una única tarjeta de línea compacta, consumiendo menos potencia que 10 transpondedores discretos.

Los PIC aportarían a la ingeniería de los super-canales lo que la integración electrónica aportó en su momento a las CPU multi-core. Los PIC eliminarían las limitaciones de la complejidad de los componentes ópticos y permitiría que la ingeniería correcta fuera aplicada. Si quieres saber algo más sobre los PIC pincha aquí

Flexibilidad es la clave para el éxito de los super-canales

Los supercanales deben ser extremadamente flexibles en una serie de parámetros:

  • ¿Qué tipo de modulación debería usar?
  • ¿Cual es la mejor manera de optimizar la eficiencia espectral y el alcance
  • ¿Qué espaciado deben tener las portadoras?
  • ¿Cual debería ser la anchura total de un super-canal?

Un super-canal ideal  debería permitir seleccionar todos estos parámetros mediante software. De manera que el operador pudiera escoger, en el momento de la provisión, la combinación óptima de parámetros para cada circuito.

El concepto de rejilla flexible, parece que es una opción que no se podrá descartar para obtener velocidades en torno a 1 Tbps de manera eficiente, y eso implica que será imprescindible que el espaciado y la anchura de los canales sea dinámico y configurable por SW. El horizonte temporal de disponibilidad no va más allá de los 4 años.

Puedes encontrar un interesante Whitepaper con mucha más documentación en Super-Channels DWDM Transmission Beyond 100 Gbps